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GENERALIZED THEORY FOR NONISOTHERMAL STRAIN 

E. I. Blinov and K. N. Rusinko UDC 539.374 

The problem is solved for analytical description of relationships between strains, 
stresses, and temperature "at a point" of a solid during its thermomechanical loading. 
Stresses are divided into equilibrium and nonequilibrium. Equilibrium stresses do not de- 
pend on time effects for deformation, and through them by methods of classical plasticity 
theory irreversible strain is determined. Recovery of mechanical properties at elevated 
temperatures is considered. Apart from nonisothermal plastic strain, nonsteady and high- 
temperature steady-state creep and thermal aftereffect are described. 

i. Basic Assumptipns. Consideration is given to the condition of a constant density 
substance in the quite small neighborhood of a point of deforming solid as an element char- 
acterizing the condition at this point. Due to the specific nature of strains for a solid, 
this phenomenological element of material forms a closed thermodynamic system in which clas- 
sical thermodynamic laws operate [i]. Experiments show [2, 3] that if at a certain instant 
of thermomechanical loading for an actual solid strain and temperature are fixed, then after 
this there is a reduction in stress so that complete (thermodynamic) equilibrium in the sys- 
tem sets in only after this relaxation. 

Stresses which remain after transfer of the system from an actual to a thermodynamic 
equilibrium condition we call equilibrium, and the relaxed part of stresses whose tensor 
components are obtained by subtracting the equilibrium stress tensor component <oij> from 
the corresponding stress tensor component oij occurring at the instant of fixing strains 
and temperature, we call nonequilibrium stresses and we designate them #ij" Thus, in each 
instant of deformation there is an identity 

~i~------- ~ i j  - -  <oi j>,  i, ] = t ,  2, 3. ( 1 . 1 )  
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By definition nonequilibrium stresses are expressed directly in the form of thermody- 
namic nonequilibrium, i.e., deformation kinetics for an actual solid in time, displaying a 
zero beginning of thermodynamics for the case in question. 

In thermodynamics the type of material in the sense of a "rheological rule" for the 
test material [i] depends entirely on the specific nature of its dissipation. With a known 
dissipation function relationships governing the link between stresses and strains at a 
point of the material, i.e., the type of material, may be found easily. 

The total density for entropy production at the point of a material, i.e., the dissipa- 
tive function of a phenomenological element within the bounds of nonequilibrium thermodynam- 
ics, is found from the first and second beginnings of thermodynamics in [4] in the form 

O = (<qij> e~ + r  q~T,JT)/T,. (1 .2 )  

and according to the second law of thermodynamics, 8 ~ 0. Here and below gij H = eij - eijr ; 

eij, eij H, gij r are tensor components for total, irreversible, and reversible relative 
strains respectively; ~ij are components of the tensor value characterizing nonequilibrium 
of the deformation process "by coordinates;" qi are components of the velocity vector for 
heat flow; for repeated indices there is summing; a full stop above a symbol indicates dif- 
ferentiation with respect to time t, and a comma at the level of indices indicates differen- 
tiation with respect to the index following it. 

2. Fundamental Equations. In future we limit ourselves to processes occurring in a 
field of uniform temperatures where the third term of (1.2) equals zero, and we analyze the 
remaining terms taking account of the fact that with the small strains in question their 
effect on each other may be ignored. 

The first term of (1.2) <oij>~ijH e 0 indicates that in considering process kinetics 
irreversible strain is entirely determined only by equilibrium stresses. Irreversible de- 
formation processes, composed of a sequence of equilibrium state, do not depend on time and 
they are a subject of classical plasticity theory [5]. In particular, with a smooth loading 
surface the associated flow rule is written as 

~/ a/ d<s~,>, ~/ d<s~,>~>0. de~ ---- F ~ <si~ > 0 <~> a <s~> (2.1) 

For simplicity we limit ourselves to an initially isotropic material with translation- 
al strengthening, with which the surface loading equation has the form [6] 

3 
/(<o~j>) = ~ (<s~r - -  c~5) (<s~> - -  c e ~ ) -  <r >2 = O, ( 2 . 2 )  

where <Oy> is yield strength with "equilibrium" loading; <oi~> are equilibrium stress ten- 
O 

sor deviator components; f = f(<oij> ) is loading surface; F is a material constant. 

According to the second term of (1.2) ~ii~ij e 0, assuming that ~ij = ~ij(~ll, Dl2, 
Ul3, -'', ~33) and that these functions are linear, we write 

%J = rumnPm~" (2 .3 )  

As for every "coordinate" parameter of state, ~i~ are expressed in terms of independent 
"force" coordinates <ai~> , ~ij, T, so that if for inflnitely small time intervals dt equili- 
brium stresses have an increment d<omn> , nonequilibrium stresses have d~mn, and temperature 
has dT, then 

dbtii = aijmnd <(;ran> -}- bijmnd~;mn + rijdT. (2 .6 )  

From ( 2 . 3 )  ;and ( 2 . 4 )  we o b t a i n  ~ i j  + Aijmn~mn = qijmn<$mn> + g i j  ~ (Aijmn, q i jmn,  g i j  a re  
material constants). 

For an initially isotropic material these relationships have the form 

~ij + g*i~ ---- a <~ij> (2.5) 

Here coefficients g and ~ only depend on temperature. Equations (i.i), (2.1), and (2.5) 
determine irreversible strain "at a point" of an initially isotropic solid. 
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3. Simple Uniaxial Tension and Nonsteady-State Creep with a Constant Holding Tempera- 
ture. Separation of total stresses into equilibrium and nonequilibrium makes it possible 
to describe a set of strain rate effects: the dependence of strain on loading rate, a delay 
in creep, a dependence of the additional loading on loading schedule, nonsteady-state creep, 
which have been studied in [7] on the basis of slip concepts. 

As an example we write analytically simple uniaxial tension and nonsteady-state creep 
at constant room holding temperature. 

With uniaxial loading from (2.2) 

and from (2.5) 

(g and a are material constants). 

By substituting (i.i) and (3.1) 

3 H <a> = <ay> + ~ c~ , .  (3.1)  

+ g~ = a<$> (3.2) 

in (3.2), and solving the equation obtained with ini- 
tial conditions (t = 0, a(0) = Oy, <o>(0) = <ay>, EH(0) = 0), we find the expression 

~" (t) = 3c (I + a) ~ - g - ~) d~ 
o (3.3)  

g t a) <c~] + + <Oy>- %) , 

determining irreversible strain in relation to extension rate. 

Now we establish the link between Oy and <Oy>. By substituting (i.I) in (3.2) and 
solving the equation obtained relative to <o> with extension to the yield limit, i.e., 
with t = 0, o(0) = <o>(0) = 0, we have 

i( ) ] ag g ~) z (~) d~ ( 3 . 4 )  <~> (t) = a (t) + i-V~ ~ exp - ~ (t- . 

As a rule, extension in the elastic region is carried out by a linear rule o(t) = vt 
(v = const). By substituting this value in (3.4) and considering that at the yield limit 
oy = Vty, we write 

g gy 

The " e q u i l i b r i u m "  y i e l d  l i m i t  <ay> i s  a m a t e r i a l  c o n s t a n t .  In  p r a c t i c e  i t  i s  t h e  y i e l d  
limit obtained by experiment whose value does not change with quite low extension rates. 
Therefore, according to (3.5) the total yield limit ay = f(v), i.e., Eq. (3.5) makes it pos- 
sible to determine Oy as a function of extension rate. However, the practical value of Eq. 
(3.5) consists of the fact that it makes it possible by means of very simple tensile tests 
up to Oy with different rates to find constants g and a. For this purpose it is sufficient 
to carry out two experiments in tension: one for time t I with constant rate vl to • 
and the second, for example for time t 2 = 2t I with constant rate v 2 to caY r olY. By sub- 
stituting these values in (3.5) and solving the equations obtained, we find that 

e q--<%>/v, _ g -- ~ In y, 

y =  
,( 

215- -~-) <~y> 

(3.6)  

where 

Placing stresses of constant value o = a, = const in Eq. (3.3), we have 
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2 
(3.7) 

Subtracting from (3.7) the value of irreversible strain with instantaneous tension up to 
2 (ff,a - -  

o,, we obtain an equation for irreversible strain with constant stress A s ~ ( t ) =  3 c ( t + a )  

g t (l--exp(--~)), which determines nonsteady state creep after instantaneous ~y--(i + a)<~y>) 

t e n s i o n .  

4. High-Temperature Strain. Irreversible strain distorts the material structure. 
However, at sufficiently high temperature a structure distorted by strain recovers to the 
original natural condition. There is thermal loss of strength or material "recovery." 
This loss of strength is a specific feature of high-temperature strain generating qualita- 
tively new effects (steady-state creep and thermal aftereffect [8, 9]). 

Now we limit ourselves to material with linear translational strengthening with which 
the loading surface moves in a stress field as a rigid whole. Thermal loss of strength may 
be expressed by movement of the center of the loading surface to the initial position which 
it occupied before directional strain hardening. As a thermally activated process this loss 
of strength proceeds with time, and in order to take account of this the associated flow 
rule (2.1) is written in the form 

de~ = f of of den , ;  (4 .  l )  

dY, ma = d <sm~> q- K(r)amndt~ 

and the loading surface equation is written in the form 

3 l (< '~ j> )  = ~- ( < a p  - -  ~ )  (<s~> - ~ j )  - <%,>~ = 0; 

( 4 . 2 )  

(4.3) 

da 0 = cde~ - -  K (T) a~flt. ( 4 . 4 )  

The f i r s t  t e r m  o f  ( 4 . 4 )  i n d i c a t e s  t h a t  m a t e r i a l  s t r e n g t h e n i n g  i s  c a u s e d  by i r r e v e r s i b l e  
s t r a i n .  I n  p a r t i c u l a r ,  w i t h  K(T) = 0 and z e r o  i n i t i a l  c o n d i t i o n s  a i j  = c e i j  H, i . e . ,  w i t h  
e q u l i b r i u m  p r o c e s s e s ,  a c a s e  o f  p l a s t i c i t y  t h e o r y  o c c u r s  [ 6 ] .  The s e c o n d  t e r m  o f  ( 4 . 4 )  r e -  
f l e c t s  t h e  p r o p e r t y  o f  t h e  m a t e r i a l  t o  weaken a t  q u i t e  h i g h  t e m p e r a t u r e s ,  and t h e r e f o r e  
p a r a m e t e r  K d e p e n d s  on t e m p e r a t u r e  so  t h a t  in  t h e  a b s e n c e  o f  t h i s  w e a k e n i n g  K(T) = 0. 

E q u a t i o n s  ( 1 . 1 ) ,  ( 2 . 5 ) ,  ( 4 . 1 ) - ( 4 . 4 )  a r e  a c o m p l e t e  s y s t e m  o f  t h e o l o g i c a l  e q u a t i o n s  f o r  
n o n i s o t h e r m a l  s t r a i n  t a k i n g  a c c o u n t  o f  t h e r m a l  l o s s  o f  s t r e n g t h .  We u s e  them f o r  a n a l y t i c a l  
d e s c r i p t i o n  and e x p l a n a t i o n  o f  c o n d i t i o n s  f o r  t h e  e x i s t e n c e  o f  such  s p e c i f i c  h i g h - t e m p e r a t u r e  
s t r a i n  e f f e c t s  as  s t e a d y - s t a t e  c r e e p  and t h e r m a l  a f t e r e f f e c t .  

5.  S t e a d y - S t a t e  C r e e p .  We assume  t h a t  s t e a d y - s t a t e  c r e e p  p r o c e e d s  a t  t h e  same c o n -  
s t a n t  t e m p e r a t u r e  T ,  as  p r i o r  l o a d i n g .  T h i s  t e m p e r a t u r e  i s  s u f f i c i e n t l y  h i g h  so  t h a t  e q u i l i -  
b r i u m  s t r e s s e s  do n o t  g e n e r a l l y  e x i s t  and t h e r e  i s  h i g h - t e m p e r a t u r e  l o s s  o f  s t r e n g t h  so  t h a t  
a t  any  a r b i t r a r y  i n s t a n t  o f  t i m e  # i j  = 0, and c o n s e q u e n t l y  < a i j >  = o i j .  I n  t h i s  way in  
( 3 . 2 )  a = 0 and t h e  r e l a t i o n s h i p  b e t w e e n  s t r e s s e s  and i r r e v e r s i b l e  s t r a i n s  w i t h  i n s t a n t a n -  
eous  p r i o r  l o a d i n g  t o  o i j  = o i l * ,  o i j *  = c o n s t  i s  r e p r e s e n t e d  by r e l a t i o n s h i p s  ( 4 . 1 ) - ( 4 . 4 )  
w i t h  d t  = 0, i . e . ,  e q u a t i o n s  o t  a f l o w  t h e o r y  v a r i a n t  [ 6 ] .  

The s t r a i n  mechan i sm u n d e r  c o n d i t i o n s  o f  t h e r m a l  l o s s  o f  s t r e n g t h  w i t h  c o n s t a n t  s t r e s s -  
es  and t e m p e r a t u r e s  i s  e x p l a i n e d  on t h e  example  o f  t h e  b e h a v i o r  o f  t he  s p e c i m e n  a f t e r  s i m p l e  
u n i a x i a l  t e n s i o n  when in  a c c o r d a n c e  w i t h  ( 4 . 4 )  

da == cden - -  K(T)(zdt. (5.1) 

Let a specimen of initially isotropic material under thermal loss of strength condi- 
tions be extended at constant temperature to o, > av, and then stress be kept constant. 
With ~ = a, > o., there is thermal loss of strength, as a result of which the center of the 
loading surlface 61' , occupied at the instant of reaching position A with stress value a, 
(Fig. i, where the initial position of the yielding sphere is indicated by broken lines), re- 
turns to the original position O, and for time intervals dt it is displaced by elementary 
distance O1'O1, so that the loading surface itself occupies position B. In this way irre- 
versible strain does not occur (deH = 0) and from (5.1) 
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da = - -  K ( T ) a d t .  ( 5 . 2 )  

The change in  p o s i t i o n  of  a r i g i d  load ing  s u r f a c e  ( s p h e r e  of  c o n s t a n t  r a d i u s  o r ) ,  
caused by e l e m e n t a r y  d i s p l a c e m e n t  of  i t s  c e n t e r  by a v a l u e  da d e t e r m i n e d  by Eq. (5 .~ )  wi th  
a fixed tensile stress, means its increase in relation to the new position of this surface 
by an elementary value do = d~ (Fig. i). As is well known from flow theory, this causes 
an instantaneous elementary increase in irreversible strain de H, which strengthens the ma- 
terial, returning the loading surface to the original condition (from position B to posi- 
tion A). 

With an instantaneous elementary increment in stress the second term in (4.4) is ab- 
sent, and consequently 

d~ = ]d~l = cds ' .  ( 5 . 3 )  

S ince  t he  l oa d ing  s u r f a c e  s h i f t s  as a r i g i d  whole and do = da, then  from ( 5 . 2 )  and ( 5 . 3 )  

~" (t) = K (T , )  ~ (t)/c. ( 5 . 4 )  

On the  o t h e r  hand, by s u b s t i t u t i n g  ( 4 . 3 )  in  ( 4 . 1 )  f o r  u n i a x i a l  l oad ing  we o b t a i n  t a k i n g  ac-  
count  of  ( 4 . 2 )  and ( 4 . 4 )  w i th  dv = 0 

~ (t) = 4Fo~K (T , )  ~ (t). ( 5 . 5 )  

By comparing ( 5 . 4 )  and ( 5 . 5 )  we f i n d  m a t e r i a l  c o n s t a n t  c = 1 / (4Foy2 ) .  

With a c o n s t a n t  l oad ing  c o n d i t i o n  when acco rd ing  to  ( 4 . 3 )  a i j  (and t h i s  a l s o  means 
with uniaxial loading) is a fixed value, Eq. (5.4) determines irreversible strain with a 
constant rate. 

\ 
Thus, simultaneous occurrence of mechanical strengthening and mechanical recovery pro- 

cesses with a constant load condition leads to irreversible strain with a constant rate, 
i.e., to steady-state (linear) creep. 

It is easy to see that formal substitution in (5.1) of the value ~ = const leads to a 
similar result [i.e., to Eq. (5.4)] since the reasoning given above is only necessary for 
explaining the steady-state creep mechanism. A change in loading surface due to recovery 
of mechanical properties, but not connected with creep strain, was noted in [10]. 

6. Thermal Aftereffect. The phenomenon of a "spontaneous" change in article shape 
with repeated cyclic changes in temperature, which may also occur in the absence of an ex- 
ternal load, is called the thermal aftereffect. With a change in temperature for a poly- 
crystalline body, due to the dense fitting in it of randomly placed particles with each 
other (crystals, grains, etc.) thermal microstructural stresses arise (second order) [7, 
ii]. Equality to zero of the average microstructural stresses for a phenomenological ele- 
ment free from external forces of a body with any gradient-free change in its temperature 
points to their probable random distribution. Therefore, with a change in temperature they 
increase identically in all directions, reaching first the flow surface or all of its points 
at once (if this surface is a sphere with a center at the zero point of the stress field), 
or at a point of it which is least distant from the stress field (see Fig. i, point a). 
With a prolonged increase in thermostructural stresses the body macrodeforms irreversibly 
in a direction determined by the position of the "minimum" point on the loading surface 
(thermal reduction in length in Fig. i). 

If a strengthening material deforms irreversibly in a certain directiondirectly due 
to a change in temperature, then in this direction the loading surface is removed from the 
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zero center of the stress field, i.e., there is thermal strengthening. Therefore, if the 
temperature returns to the original value, and then it changes again as previously, then for 
the start of irreversible strain in the previous direction it should reach the maximum pre- 
vious value, and a change in the shape of the body will not occur with cyclic single-value 
changes in temperature. However, this claim is only true in the absence of thermal loss of 
strength. In the presence of it with a fixed change in temperature the material weakens. 
This weakening will be accompanied by irreversible strain whose mechanism is the same as 
for steady-state creep, only here it forms with a relaxation reduction of thermostructural 
microstresses which make its rate variable (dying down gradually). 

A predominant direction for irreversible strain in a material due to a change in tem- 
perature may also be created by applied external forces. In fact, if some external load 
is applied to a body not taking the material out of the region of elastic strains, then 
with a change in temperature thermostructural stresses will combine with force stresses in 
a certain direction. If the change in temperature is sufficiently large that this total 
value of stresses exceeds the yield limit, then in this direction with a change in tempera- 
ture irreversible strain occurs at once. In addition, if there is thermal loss of strength, 
then the shape of the article changes with cyclic single-amplitude thermal changes in a simi- 
lar way to that in question. 

Thermostructural stresses occurring in an article with a change in its temperature are 
characterized by a certain average isotropic measure which is introduced into the associated 
flow rule. This measure, reflecting the properties of these stresses, should depend on the 
whole history of temperature changes: decrease with the passage of time at constant tempera- 
ture and give an increment in irreversible strain both with an increase and a decrease in 
temperature. These requirements are satisfied by a scalar value 

Q(t)=l!T(s)R(t_s)dsl, ( 6 . 1 )  

where R(t - s) is a decreasing function with an increase in argument t - s, describing re- 
laxation of thermostructural microstresses. Therefore, nucleus R in (6.1) is taken in the 
form of (6.2) R = Bexp (-8(t - s)) (B is a constant, and 8 is a material parameter). 

A measure of thermostructural microstresses is added to existing stresses under condi- 
tions of thermal loss of strength by writing (4.2) in the form 

dEm~ = d<sm=>+K(T)um=dt +dQ(t). ( 6 . 3 )  

First we find irreversible strain due to an instantaneous change in temperature AT = 
T, - T o (i.e., with thermal shock) with which dt = 0, and consequently, d<smn> = 0. Since 
in the case of simple uniaxial loading with tension by substituting (4.3) in (4.1) we have 

den = 4f<6r>~d~'  ( 6 . 4 )  

and according to (6.3) dE=Bd[!'(s)exp(--~(t--s))ds], and by integrating (6.4) and consider- 

ing  that with t o = 0 AT = 0, ~H = eH(0) = ~0 H is irreversible strain at the start of thermal 
shock, F = 1/(4COy2), we obtain 

" " + B I A r l / c  (6 .5 )  E~ ~ E0 

(~,H is irreversible strain at the end of thermal shock). 

Now we find irreversible strain as a result of thermal shock. For this purpose we fix 
changed temperature and tensile stress, i.e., we assume that T = T, = const and o = o, = 
const, and by solving set of Eqs. (5.1) and (6.3) we have 

c~" = cA% + Ka, t + y  (6 6) 

Fo r  u n i a x i a l  t e n s i o n  f rom ( 4 . 3 )  we f i n d  t h e  e q u a l i t y  ( 3 / 2 ) a  = <o> - <ay>,  which  w i t h  
high-temperature creep without strengthening, i.e., with <o> = o = o, = const and ~ = a, = 
const, takes: the form ~, = (2/3)(0, - Oy). By substituting this value of ~, and ~e,H = 

e, H - e0 H and from (6.3) in (6.6) we obtain the main calculation equation 
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e" (t) = T Cy) + ~ t - -  ~ ( 1 - - ~ )  ( i - -  exp ATI] , (6 .7 )  

which takes account of the main characteristic features of strain with temperature oscilla- 
tion under conditions of high-temperature creep noted in experiments [8, 9, ii]. 

7. Creep of Zinc with Cyclic Thermal Changes. In Fig. 2, curve 2 is creep strain for 
polyCrystalline zinc with Tz = 325 K and o, = 60 MPa, and shown here also curve i is its 
strain with cyclically changing temperature [8]. From the diagram it follows that cyclic 
changes in temperature repeatedly increase the creep of zinc making irrefutably important 
to consider these features in theory. The calculation equation for strain under the condi- 
tions described emerges directly from Eq. (6.7) 

A~(t) = [L + R t  -}- M(l -- exp (--~t))][ATI, (7 .1)  

where L, R, M, and B a re  m a t e r i a l  c o n s t a n t s  s u b j e c t  to d e t e r m i n a t i o n  by exper iment .  

We find constant L, characterizing the instantaneous increase in strain with a jump in 
temperature, by using the test results for zinc given in [8, 9, 12], from which it follows 
that with AT = 40 K and a~ = 60 MPa with an increase in temperature Ae H = 7.7.10 -5 By sub- 
stituting these values in (7.1) with t = 0 we obtain L B = 1.925.10 -6 K -l With a reduction 
in temperature Ae H = 5.55.10 -s and L H = 1.387.10 -6 K -l Here L B and L H are values of L with 
increased and reduced temperature. 

In order to determine constant M, characterizing the thermal aftereffect, again we use 
results given in [8, 9, 12] according to which with AT = 40 K and a, = 60 MPa the thermal 
aftereffect for zinc forms strain eiH = 3.3.10 -s. By substituting these data in (7.1) with 
L = R = 0 and t + ~, we have M = 8.24.10 -7 K -z 

Analysis of strain curves for the thermal aftereffect given in [8, 9, 12] indicate that 
in zinc it ceases not later than 2 h after the temperature jump. By taking relaxation time 
tp = 7200 sec, we obtain from (7.1) (with L = R = 0) 8 = 5 "I0-~ sec-Z. 

In order to determine constant R we use the isothermal Creep curve 2 (Fig. 2) accord- 
ing to which after 10 h with T = 325~ when all of the relaxation processes caused by a 
change in temperature have occurred, e H = 4.25.10 -4 . In this way from (7.1) we find R = 
1.86.10 -I~ (K.sec) -l 

By substituting values of constants found in (7.1) we determine the calculation equa- 
tions sought for strain in zinc with cyclic thermal changes. Results of calculations cor- 
responding to test data are shown in Fig. 2. 

The theory obtained for nonisothermal strain expresses a new approach to the phenome- 
non of solid deformation confirmed for some more typical cases of loading by test data. 
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NONDISSIPATIVE INELASTIC STRAIN FOR A SOLID ELEMENT 

G. V. Ivanov UDC 539.3 

Elastic strains for a solid element are the part of strain for the element which disap- 
pears after it is unloaded (removal of external effects). Inelastic (residual) strains are 
the part of strain for the element which remains in it after it is unloaded. Apart from in- 
elastic strains for an element with which mechanical energy is converted into heat, nondis- 
sipative inelastic strains are possible, i.e., those with which mechanical energy is not 
converted into heat. 

One of the simplest and graphic examples of a deformation process with nondissipative 
inelastic strains may be deformation of a system of two elastic springs and a rod (Fig. 1 
from [i]). During deformation of this system mechanical energy is not converted into heat, 
but due to overall clamps A the unloading process proceeds in a different way from the 
loading process, as a result of which the relationship between force p applied to the rod 
and displacement ~ of the rod will have the form indicated in Fig. 2, where A* is nondissi- 
pative inelastic strain of the system. 

In this work equations are formulated determining nondissipative inelastic strains for 
a solid element. 

i. Division of Strain into Elastic and Inelastic. As a strain tensor we take [2] 

eije'e' :~#D~D ~, ~13= ~-( ~z'Dl3 e~.e~) (1.1) 

(~ and e i are basis vectors of Lagrangian and Cartesian coordinate systems). 

The state of a material element from which strain is reckoned is called the initial 
state. We assume that stresses in the initial state equal zero, density and temperature 
equal prescribed values P0 and To differing from zero, and in any stage of the deformation 
process for the material element it is possible to "unload it completely" to a state with 
stress and "temperature T o equal to zero (by cutting an element from a material, heating and 
cooling it 'to the temperature of the initial condition, and giving it the possibility of 
deforming freely). 

In gaseous media equality of stresses to zero is only possible with density equal to 
zero. In this case as an initial condition we take that in which the average stress and 
temperature equal a prescribed value differing from zero, and by "complete unloading" we 
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